
For the past few months, I’ve been
discussing the const qualifier, mostly
with an eye on using const to place
objects into ROM. I haven’t said all I
have to say about const, but part of
what I have left involves the volatile
qualifier, as well. So this month, I’ll
introduce you to the volatile qualifier.

The volatile qualifier can appear
anywhere that the constqualifier can.
Whereas const declares objects that
the program can’t change, volatile
declares objects whose values might be
changed by events outside the pro-
gram’s control. A typical example of a
volatile object is a memory-mapped
input/output (I/O) port.

Memory-mapped I/O

Most modern computers communi-
cate with I/O devices using either
memory-mapped I/O or port I/O.
Memory-mapped I/O maps device
registers into the conventional data
space. To a C or C++ programmer,
memory-mapped I/O registers look
more or less like ordinary objects.
That is, storing into a memory-
mapped device register sends com-
mands or data to a device; reading
from a memory-mapped I/O register
retrieves status or data from a device.
This is the approach used in the
Motorola 68K family of processors.

In contrast, port I/O maps control
and data registers into a separate (often
small) data space. Port I/O is similar to
memory-mapped I/O except that pro-
grams must use special instructions,
such as the in and out instructions on
the Intel x86 processors, to move data
to or from the device registers.

My focus here is on explaining the
volatile qualifier rather than the
details of I/O. To keep things simple,
the remaining discussion uses only the
memory-mapped model.

A typical hardware device often
communicates through a sequence of
device registers. Some registers com-
municate control and status informa-

tion, while others communicate data.
A given device may use separate regis-
ters for input and output. Registers
may occupy bytes, words, or whatever
the architecture demands.

The simplest representation for a
data register is as an object of the
appropriate size integer type. For
example, you might declare a one-byte
register as a char or a two-byte register
as a short int. Then you can move
data to a memory-mapped device by
storing a value into its output data reg-
ister, and retrieve data from that device
by reading from its input data register.

A control/status register is not really
an integer-valued object—it’s a collection
of bits. One bit may indicate that the
device is ready to perform an operation,
while another might indicate whether
interrupts have been enabled for that
device. A device might not use all the
available bits in its control/status register.

One common technique for manipu-
lating control/status registers is to use
symbolic constants to represent masks for
isolating bits, and use bitwise operators
(like & and |) to set, clear, and test bits in
registers. For example, you might repre-
sent a 16-bit control/status register as:

typedef short int control;

#define ENABLE 0x40

/* enable interrupt */

#define READY 0x80

/* device is ready */

You can then define:

control *const pc

= (control *)0xFF70;

which uses a cast expression to initial-
ize pc to point to the address of a
memory-mapped control/status regis-
ter at some fixed address. (Although C
and C++ both allow cast expressions
such as the one above that convert
integers to pointers, the exact behavior
of such casts varies across platforms.)

Once pc points to a memory-
mapped control/status register, the
program can communicate with the
device by testing or setting the value of
the register via pc. For example:

Embedded Systems Programming SEPTEMBER 1998 101

P R O G R A M M I N G P O I N T E R S

Dan Saks

Volatile Objects

The volatile qualifier declares objects whose

value can be changed by events beyond the pro-

gram’s control. Volatile objects are useful for

memory-mapped I/O ports.

*pc &= ẼNABLE;

/* clear enable bit */

clears the control register’s enable
bit, so the device will not trigger inter-
rupts. A loop such as:

while (*pc & READY == 0)

/* do nothing until ready */;

repeatedly polls (tests) the control
register’s ready bit until that bit is
non-zero.

Many devices use control/status
and data registers in tandem. The fol-
lowing declarations declare a bi-direc-
tional device (supporting both input
and output) using a pair of registers
for input and another pair for output:

typedef short int control;

typedef short int data;

#define ENABLE 0x40

#define READY 0x80

typedef struct port port;

struct port

{

control c;

data d;

};

typedef struct ioport ioport;

struct ioport

{

port in, out;

};

Using the declarations above,

ioport *const pio

= (ioport *)0xFF70;

declares pio to point to an I/O port,
and

pio->out.c &= ẼNABLE;

disables output interrupts for that
I/O port’s output port.

An assignment such as:

pio->out.d = c;

sends the value of character c to the
output device. It immediately clears
the ready bit in the corresponding
output control/status register to indi-
cate that the device is busy.

The hardware automatically sets
the ready bit when the device com-
pletes the current operation. That is,
it sets the ready bit to indicate that
the device is ready to start another
operation. Thus, a loop such as:

while (p->out.c & READY == 0)

;

waits until the output device is ready
to receive another character.

As a somewhat more complete
example, a function such as:

void put(char const *s, ioport *p)

{

for (; *s != ‘\0’; ++s)

{

while (p->out.c & READY == 0)

;

p->out.d = *s;

}

}

sends the characters in null-terminat-
ed string s to the output device con-
trolled by *p.

Overly aggressive optimization

Using the previous declaration for
ioport, here’s a sequence of code for
a rudimentary device driver that
writes a '\r' (carriage return) and
'\n'(newline or line feed) to the out-
put device of an I/O port (inspired
by P.J. Plauger’s “Touching Memory:
Standard C Makes The Act More
Precise,” C Users Journal, May 1988):

while (pio->out.c & READY == 0)

;

pio->out.d = ‘\r’;

while (pio->out.c & READY == 0)

;

pio->out.d = ‘\n’;

A compiler might not realize that

pio->out.c is actually a device regis-
ter whose value could change due to
some external event such as the com-
pletion of an I/O operation. The
compiler’s optimizer might therefore
conclude that either the ready bit in
pio->out.c is always set, or the ready
bit in pio->out.c is never set. In gen-
erating code, the compiler considers
both possibilities.

If the ready bit is always set, the
program never enters this loop:

while (pio->out.c & READY == 0)

;

If the ready bit is never set, the
program never leaves the loop. In
either case, there’s no need to test the
condition more than once. The opti-
mizer transforms the loop into:

if (pio->out.c & READY == 0)

for (;;)

;

which tests the condition only once,
and then either loops forever or
never loops at all.

After this optimization, the driver
code looks like:

if (pio->out.c & READY == 0)

for (;;)

;

pio->out.d = ‘\r’;

if (pio->out.c & READY == 0)

for (;;)

;

pio->out.d = ‘\n’;

Again, as far as the compiler can tell,
the ready bit is either always set or never
set. If it’s always set, then the program
skips both loops. If it’s never set, the
program falls into the first loop and
never escapes. In either event, the pro-
gram never executes the second loop.
That loop is dead code, and the opti-
mizer can eliminate it.

After this optimization, the driver
code looks like:

if (pio->out.c & READY == 0)

PROGRAMMING POINTERS

102 SEPTEMBER 1998 Embedded Systems Programming

for (;;)

;

pio->out.d = ‘\r’;

pio->out.d = ‘\n’;

As far as the compiler can see, the
second assignment overwrites the
result of the first assignment.
Therefore, only the last assignment is
worth keeping. The final “optimized”
code looks like:

if (pio->out.c & READY == 0)

for (;;)

;

pio->out.d = ‘\n’;

It does the wrong thing, but much
more efficiently!

The problem here is that a memo-
ry-mapped I/O port isn’t an ordinary
object in RAM. With an object in
RAM, a compiler can assume that if
the program places a value in the
object, the value will remain in that
object until the program places a dif-
ferent value there. Thus, a compiler
can “optimize away” references to the
object if the compiler can determine
that the value hasn’t changed since
the last reference.

With a memory-mapped port, a
compiler can’t make the same assump-
tion. The value in a port may change
spontaneously. If the program has an
expression that looks at the port’s
value, the compiler must generate
code that actually fetches the value. It
can’t optimize away those fetches.

The volatile qualifier

In days gone by, programmers often
solved this problem by placing device
driver code in a separate source file.
You had to compile that one file with
optimizations turned off, but then
you could compile the rest of the pro-
gram with optimizations turned on.

Some compilers offer pragmas
that will turn off compiler optimiza-
tions for a portion of a source file.
You could then wrap the driver code
inside a pair of pragmas, as in:

#pragma optimization = off

/* driver code goes here*/

#pragma optimization = on

You had to hope you turned opti-
mizations off in just the right places.

The volatile qualifier eliminates the
guesswork. It identifies objects, such as
memory-mapped ports, that may be
changed by events that compilers can-
not detect. For example,

ioport volatile *const pio

= (ioport *)0xFFA0;

declares that pio has type “const
pointer to a volatile ioport.” Thus,
*pio is an object whose value may
change spontaneously. This tells the
compiler that it shouldn’t “optimize
away” references to *pio, even if it
appears that the value of *pio hasn’t
changed since the last reference.

The volatile qualifier prevents

optimizations only for accesses to
volatile-qualified objects. It does not
inhibit any other optimizations.

An object can be both const and
volatile. For example, given:

iport volatile const *pi = ...;

then *pi is a const volatile iport
object. The program can’t write to
*pi, but it must act as if *pi’s value
might change spontaneously. This is
typical behavior for an input port.

Of course, there’s more to the
volatile qualifier than what I’ve cov-
ered in this brief discussion.
Although I will resume my discussion
of const in upcoming articles, I will
fill in details on volatile as well. esp

Dan Saks is the president of Saks &
Associates, and a contributing editor for
the C/C++ Users Journal. Write to him
at dsaks@wittenberg.edu.

PROGRAMMING POINTERS

Embedded Systems Programming SEPTEMBER 1998 103

	return:

