
The C language provides several
different kinds of constants: integer
constants such as 10 and 0x1C, floating
constants such as 1.0 and 6.022e+23,
and character constants such as 'a' and
'\x10'. C also provides string literals
such as "ouch!" and "\n". C++ pro-
vides the same kinds of constants and
literals, except the C++ standard just
calls all of them literals instead. I do,
too.

Every literal in C and C++ has a
type. For example, 10 is obviously an
integer. But is it an int (which is
signed by default) an unsigned
int, or a short or long variation
thereof? Do you even care?

If you’re a C programmer, you
might not care. Part of me hopes
you’d care, but I’m not absolutely
sure you need to. Many C program-
mers apparently get by quite well
without knowing the exact types of
constants.

If you’re a C++ programmer, you
really should care. C++ supports
function name overloading, and the
exact type of a literal just might
determine which function is the best
match for a particular call. For
example, given:

int f(int);

unsigned int f(unsigned int);

long int f(long int);

which of these functions does f(10)
call? The answer is:

int f(int);

because the precise type of 10 is
(signed) int.

Forms of integer literals

An integer literal takes different
forms:

• A decimal integer literal (base 10)
is a non-zero digit followed by zero
or more decimal digits

• A hexadecimal integer literal
(base sixteen) is 0x or 0X fol-
lowed by a sequence of one or

more hexadecimal digits
• An octal integer literal (base eight)

is the digit 0followed by a sequence
of zero or more octal digits

For example, the decimal integer liter-
al 63can also be expressed as the hexa-
decimal integer literal 0x3F or as the
octal integer literal 077.

Any integer literal may have a suffix
that influences its type:

• U or u specifies that the literal has
an unsigned type

• Lor l specifies that the literal has a
long type

• LLor llspecifies that the literal has
a long long type. (This is available
in the most recent edition of
Standard C, C99, but not in earlier
versions of C or in C++)

For example, 63u has type unsigned

int. 0x3FLhas type (signed) long int.
An integer literal suffix may combine
Uwith either L or LL (in either upper
or lower case and in either order), so
that both 63ul and 0x3FLU have type
unsigned long int.

An integer literal’s suffix influences
the literal’s type, but does not deter-
mine it. The type also depends on the
literal’s value.

Types of integer literals

In general, an integer literal’s type is
the smallest integer type no smaller
than int that can hold the literal’s
value and still satisfy the constraints
imposed by the form and suffix. For
example, the type of a decimal integer
literal with no suffix is the smallest
(the first) of the following types that
can represent its value: int, long int,
and in C99, long long int. Because
the maximum values of the types vary
across platforms, the exact types for
many integer literals also vary across
platforms.

Both the C and C++ standards allow
considerable slack in the range of val-
ues for integer types. The maximum
value for an int must be at least
215–1, and the maximum value for a
long int must be at least 231–1. In
practice, this means that an int must

Embedded Systems Programming SEPTEMBER 2000 113

P R O G R A M M I N G P O I N T E R S

Dan Saks

Numeric Literals

Every literal has a type. It may not be obvious,

and it may vary across platforms, but the

standard does specify it precisely.

occupy at least 16 bits and a long
int must occupy at least 32 bits.

On any platform, intand long int

may occupy more than their minimum
storage requirement, as long as a long
intoccupies at least as much storage as
an int. An unsigned integer type must
occupy the same amount of storage as its
corresponding signed integer type. For
instance, a 16-bit platform might use 16
bits for int and unsigned int and 32
bits for long int and unsigned long

int. A 32-bit platform might use 32 bits
for all four types, int, unsigned int,
long int, and unsigned long int.

Table 1 describes the rules for deter-
mining the type of an integer literal in
C99 and C++. A literal whose value can’t
be represented in any of the listed types
produces a compile error.

The rules in Table 1 lead to some
potential portability problems. A deci-
mal integer literal whose value is not
greater than 32,767 (= 215–1) has type
int on every standard C and C++ envi-
ronment. No surprise there. However,
any decimal integer literal whose value is
greater than 215-1 but not greater than

231-1 has type long int on a 16-bit plat-
form, but just plain inton a 32-bit plat-
form.

For example, given the overloaded
functions:

int f(int);

unsigned int f(unsigned int);

long int f(long int);

unsigned long int

f(unsigned long int);

calling f(32768) calls f(long int)

when compiled using C++ for a 16-bit
platform, but it calls f(int)when com-
piled for a 32-bit platform. On the other
hand, if you write the call as f(0x8000)
(0x8000 is 32,768 as a hexadecimal liter-
al), it calls f(unsigned int) on every
platform.

Floating literals

Floating literals offer a few little surpris-
es, too. The type of a floating literal such
as 1.0 or 6.022e+23 is double, not
float. Appending the letter F or f to
a floating literal makes its type float.

Appending the letter L or l to a floating
literal makes its type long double. For
example, 1.0F has type float, and
6.022e+23L has type long double.
Combining F and L (in either case and
in either order) in a floating literal is a
syntax error.

In C++, the only form of a floating lit-
eral is a decimal floating literal, in which
all of the digits (in both the significant
part and the exponent part) are decimal
digits. C99 also provides hexadecimal
floating literals, in which the digits of the
significant part are hexadecimal digits.

In a decimal floating literal, the
exponent part is optional. If present, it
begins with E or e followed by decimal
digits representing a power of 10. In a
hexadecimal floating literal, the expo-
nent part is mandatory. Since E and e
are valid hexadecimal digits, a hexadec-
imal floating literal uses P or p to mark
the beginning of the exponent part, fol-
lowing by decimal digits representing a
power of two. For example,
0x1.FFFFFEp127f is a floating constant
whose value is 0x1.FFFFFEmultiplied by
2127 (decimal). The f at the end of the
literal specifies that the literal’s type is
float.

Neither the form nor value of a
floating literal affects its type. The suf-
fix letter (or absence thereof) com-
pletely determines the type.

Character and string literals

Integer and floating literals are essential-
ly the same in both C and C++. The dif-
ferences lie in C’s added support for
long long integer types and hexadec-
imal floating literals. In contrast, charac-
ter and string literals behave slightly dif-
ferently between C and C++. Those dif-
ferences are my topic for next time. esp

Dan Saks is the president of Saks &
Associates, a C/C++ training and consulting
company. He is also a consulting editor for the
C/C++ Users Journal. He served for many
years as secretary of the C++ standards com-
mittee. With Thomas Plum, he wrote C++
Programming Guidelines (Plum Hall).
You can write to him at dsaks@wittenberg.edu.

PROGRAMMING POINTERS

114 SEPTEMBER 2000 Embedded Systems Programming

TABLE 1 The type of integer literals in C99 and C++

Suffix Decimal Literal Hexadecimal Literal
None int int

unsigned int
long int long int

unsigned long int
long long int long long int

unsigned long long int
U or u unsigned int unsigned int

unsigned long int unsigned long int
unsigned long long int unsigned long long int

L or l long int long int
unsigned long int

long long int long long int
unsigned long long int

LL or ll long long int long long int
unsigned long long int

Both U and L (in either unsigned long int unsigned long int
case and either order) unsigned long long int unsigned long long int
Both U and LL (in either unsigned long long int unsigned long long int
case and either order)

Lighter areas apply only to C99

In C++, the only form of a floating literal is a decimal floating literal, in which
all of the digits (in both the significant part and the exponent part) are deci-

mal digits. C99 also provides hexadecimal floating literals, in which the digits
of the significant part are hexadecimal digits.

	return:

