
For the past few months, I’ve been
discussing the role of cv-qualifiers (the
keywords constand volatile) appear-
ing in function parameter declara-
tions. I’ve been focusing on how you
can overload functions whose parame-
ter types differ only in their use of cv-
qualifiers,1 and why you might want to
do so.2,3

Although cv-qualifiers that appear
in a parameter declaration usually
become part of the function’s signa-
ture, they’re not always part of the
signature. There are times when C++
ignores cv-qualifiers in parameter
declarations as it determines a func-
tion’s signature. In contrast, C never
ignores cv-qualifiers in parameter
declarations. This subtle difference
between C++ and C is my topic for
this month.

Passing by value vs. by address

When a C++ compiler encounters a
call to an overloaded function, it
selects the function to be called by
matching the types of the actual argu-
ments in the call against the types of
the formal parameters in one of the
function declarations. The compiler’s
overload resolution process often
takes cv-qualifiers into account. For
example, given three overloaded
functions:

void f(T *);

void f(T const *);

void f(T volatile *);

and this assortment of pointer 
variables:

T *p;

T const *pc;

T volatile *pv;

the expression f(p)calls f(T *), f(pc)
calls f(T const *), and f(pv) calls
f(T volatile *).

The previous example illustrates
overloading with cv-qualifiers using
functions that pass parameters by
address. Let’s see how the behavior
changes when functions pass para-
meters by value rather than by
address.

For example, a function gdeclared
as:

int g(int n);

has a parameter n passed by value. A
call to gas in:

int k;

...

g(k);

copies argument k to parameter n
without altering k. Even if you
declared kas:

int const k = 1024;

the call g(k) would work just as well.
You can pass a constant argument as a
nonconstant parameter, again because
passing by value just makes a copy of
the argument. In this example, para-
meter n is nonconstant, so g can
change n’s value. However, changing
n’s value inside g has no effect on k’s
value because ndoesn’t refer back to k
in any way.

Changing g’s declaration to:

int g(int const n);

has no effect on code that calls g. A
call such as g(k) still copies argument
k to parameter nwithout altering k. It
doesn’t matter whether k is constant.
You can always read the value of a con-
stant; you just can’t write to it.

Although declaring parameter n as
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constant doesn’t matter to code that
calls g, it does matter to code within g.
When n is nonconstant, g can use n as a
read-write variable, just as it can use any
nonconstant local variable. When n is
constant, g can’t alter the value in n.
However, g can still copy n to a noncon-
stant local variable and perform compu-
tations in that local variable, as in:

int g(int const n)

{

int v = n;

// can alter v here

}

Declaring a parameter passed by
value as constant may affect the func-
tion’s implementation, but it doesn’t
affect the function’s outward behavior
as seen by any caller.

Overloading

The previous discussion raises a num-
ber of questions about what it means to
declare a pair of functions named g as:

int g(int n);

int g(int const n);

Do you expect g(3) to call g(int)
or g(int const)? In other words,
should the call choose the g that can
alter its copy of 3, or the g that cannot
alter its copy? Or, is it an error to even
declare these functions in the same
scope? The two g’s declared above
exhibit identical outward behavior.
Therefore, when a C++ compiler
encounters a call to g, it has no basis
for preferring one gover the other.

C++ avoids making the choice by
treating both g’s as the same g.
Specifically, the compiler ignores the
const qualifier in:

int g(int const n);

as it determines the function’s signa-
ture. Thus, the previous function has
the same signature as a function

declared as:

int g(int n);

Writing both of these declarations in
the same scope of a C++ program is
not an error. However, defining both
of these functions in the same pro-
gram is an error, which might not be
reported until link time.

Here we see a difference between C
and C++. In C, declaring both:

int g(int n);

int g(int const n);

in the same scope is an error. C
never ignores cv-qualifiers in a func-
tion parameter declaration. In C,
these two g’s have different function
types. The second declaration pro-
vokes a compile-time error because
C does not permit function 
overloading.

Top-level cv-qualifiers

In general, C++ does not include cv-
qualifiers in a function’s signature
when they appear at the “top-level” of
a parameter type. Here’s a bit of back-
ground to help you understand what I
mean.

Types in C and C++ can have one or
more levels of composition. For exam-
ple, pdeclared as:

T *p;

has type “pointer to T,” which is a type
composed of two levels. The first level
is “pointer to” and the second level is
“T.” The declaration:

T *f(int);

declares f as a “function returning
pointer to T.” This type has three lev-
els. The first is “function returning,”
the second is “pointer to,” and the
third is“T.”

Different cv-qualifiers can appear
at different levels of composition. For
example:

T *const p;

declares pwith type “constant pointer
to T.” Here, the const qualifier applies
only to the first level. In contrast,

T volatile *q;

declares qwith type “pointer to volatile
T.” Here, the volatile qualifier applies
only to the second level.

In C++, a cv-qualifier that applies to
the first level of a type is called a top-
level cv-qualifier. For example, in:

T *const p;

the top-level cv-qualifier is const, and
in:

T const *volatile q;

the top-level cv-qualifier is volatile.
On the other hand:

T const volatile *q;

has no top-level cv-qualifiers. In this
case, the cv-qualifiers const and
volatileappear at the second level.

Fundamental types such as char,
int, and doublehave only one level of
composition. In a declaration such as:

int const n = 10;

the top-level cv-qualifier is const.
Here’s a more precise statement of

the way C++ treats cv-qualifiers in para-
meter types:

The signature of a function includes all cv-
qualifiers appearing in that function’s
parameter types, except for those qualifiers
appearing at the top-level of a parameter
type.

For example, in:

int f(char const *p);

the const qualifier is not at the top
level in the parameter declaration, so
it is part of the function’s signature.
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On the other hand, in:

int f(char *const p);

the const qualifier is at the top level, so
it is not part of the function’s signa-
ture. This function has the same sig-
nature as:

int f(char *p);

In a function declared as:

int f(char const *const p);

the const qualifier to the left of the *
is not at the top level, so it is part of
the function’s signature. However, the
const qualifier to the right of the *is at
the top level, so it is not part of the
function’s signature. Thus, the func-
tion declared just above has the same
signature as:

int f(char const *p);

It’s important to note that C++ does
not ignore top-level cv-qualifiers in
object and type declarations. For
example, in declaring an object such
as:

port volatile *const p = ... ;

the top-level cv-qualifier is const. This
is not a parameter declaration, so all
cv-qualifiers are significant. The object
p is indeed constant.

More to come

Although C++ ignores top-level cv-
qualifiers in parameter declarations
when determining function signa-
tures, it does not ignore those cv-qual-
ifiers entirely. I’ll explain what I mean
by that in my next column. esp
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