
For the past few months, I’ve been
discussing the role of cv-qualifiers (the
keywords constand volatile) appear-
ing in function parameter declara-
tions. I’ve been focusing on how you
can overload functions whose parame-
ter types differ only in their use of cv-
qualifiers,1 and why you might want to
do so.2,3

Although cv-qualifiers that appear
in a parameter declaration usually
become part of the function’s signa-
ture, they’re not always part of the
signature. There are times when C++
ignores cv-qualifiers in parameter
declarations as it determines a func-
tion’s signature. In contrast, C never
ignores cv-qualifiers in parameter
declarations. This subtle difference
between C++ and C is my topic for
this month.

Passing by value vs. by address

When a C++ compiler encounters a
call to an overloaded function, it
selects the function to be called by
matching the types of the actual argu-
ments in the call against the types of
the formal parameters in one of the
function declarations. The compiler’s
overload resolution process often
takes cv-qualifiers into account. For
example, given three overloaded
functions:

void f(T *);

void f(T const *);

void f(T volatile *);

and this assortment of pointer
variables:

T *p;

T const *pc;

T volatile *pv;

the expression f(p)calls f(T *), f(pc)
calls f(T const *), and f(pv) calls
f(T volatile *).

The previous example illustrates
overloading with cv-qualifiers using
functions that pass parameters by
address. Let’s see how the behavior
changes when functions pass para-
meters by value rather than by
address.

For example, a function gdeclared
as:

int g(int n);

has a parameter n passed by value. A
call to gas in:

int k;

...

g(k);

copies argument k to parameter n
without altering k. Even if you
declared kas:

int const k = 1024;

the call g(k) would work just as well.
You can pass a constant argument as a
nonconstant parameter, again because
passing by value just makes a copy of
the argument. In this example, para-
meter n is nonconstant, so g can
change n’s value. However, changing
n’s value inside g has no effect on k’s
value because ndoesn’t refer back to k
in any way.

Changing g’s declaration to:

int g(int const n);

has no effect on code that calls g. A
call such as g(k) still copies argument
k to parameter nwithout altering k. It
doesn’t matter whether k is constant.
You can always read the value of a con-
stant; you just can’t write to it.

Although declaring parameter n as

Embedded Systems Programming FEBRUARY 2000 63

P R O G R A M M I N G P O I N T E R S

Dan Saks

Top-Level cv-Qualifiers
in Function Parameters

Although the const and volatile qualifiers usually

add valuable compile-time type information to

your programs, they don’t always live up to all of

your expectations.

constant doesn’t matter to code that
calls g, it does matter to code within g.
When n is nonconstant, g can use n as a
read-write variable, just as it can use any
nonconstant local variable. When n is
constant, g can’t alter the value in n.
However, g can still copy n to a noncon-
stant local variable and perform compu-
tations in that local variable, as in:

int g(int const n)

{

int v = n;

// can alter v here

}

Declaring a parameter passed by
value as constant may affect the func-
tion’s implementation, but it doesn’t
affect the function’s outward behavior
as seen by any caller.

Overloading

The previous discussion raises a num-
ber of questions about what it means to
declare a pair of functions named g as:

int g(int n);

int g(int const n);

Do you expect g(3) to call g(int)
or g(int const)? In other words,
should the call choose the g that can
alter its copy of 3, or the g that cannot
alter its copy? Or, is it an error to even
declare these functions in the same
scope? The two g’s declared above
exhibit identical outward behavior.
Therefore, when a C++ compiler
encounters a call to g, it has no basis
for preferring one gover the other.

C++ avoids making the choice by
treating both g’s as the same g.
Specifically, the compiler ignores the
const qualifier in:

int g(int const n);

as it determines the function’s signa-
ture. Thus, the previous function has
the same signature as a function

declared as:

int g(int n);

Writing both of these declarations in
the same scope of a C++ program is
not an error. However, defining both
of these functions in the same pro-
gram is an error, which might not be
reported until link time.

Here we see a difference between C
and C++. In C, declaring both:

int g(int n);

int g(int const n);

in the same scope is an error. C
never ignores cv-qualifiers in a func-
tion parameter declaration. In C,
these two g’s have different function
types. The second declaration pro-
vokes a compile-time error because
C does not permit function
overloading.

Top-level cv-qualifiers

In general, C++ does not include cv-
qualifiers in a function’s signature
when they appear at the “top-level” of
a parameter type. Here’s a bit of back-
ground to help you understand what I
mean.

Types in C and C++ can have one or
more levels of composition. For exam-
ple, pdeclared as:

T *p;

has type “pointer to T,” which is a type
composed of two levels. The first level
is “pointer to” and the second level is
“T.” The declaration:

T *f(int);

declares f as a “function returning
pointer to T.” This type has three lev-
els. The first is “function returning,”
the second is “pointer to,” and the
third is“T.”

Different cv-qualifiers can appear
at different levels of composition. For
example:

T *const p;

declares pwith type “constant pointer
to T.” Here, the const qualifier applies
only to the first level. In contrast,

T volatile *q;

declares qwith type “pointer to volatile
T.” Here, the volatile qualifier applies
only to the second level.

In C++, a cv-qualifier that applies to
the first level of a type is called a top-
level cv-qualifier. For example, in:

T *const p;

the top-level cv-qualifier is const, and
in:

T const *volatile q;

the top-level cv-qualifier is volatile.
On the other hand:

T const volatile *q;

has no top-level cv-qualifiers. In this
case, the cv-qualifiers const and
volatileappear at the second level.

Fundamental types such as char,
int, and doublehave only one level of
composition. In a declaration such as:

int const n = 10;

the top-level cv-qualifier is const.
Here’s a more precise statement of

the way C++ treats cv-qualifiers in para-
meter types:

The signature of a function includes all cv-
qualifiers appearing in that function’s
parameter types, except for those qualifiers
appearing at the top-level of a parameter
type.

For example, in:

int f(char const *p);

the const qualifier is not at the top
level in the parameter declaration, so
it is part of the function’s signature.

PROGRAMMING POINTERS

64 FEBRUARY 2000 Embedded Systems Programming

On the other hand, in:

int f(char *const p);

the const qualifier is at the top level, so
it is not part of the function’s signa-
ture. This function has the same sig-
nature as:

int f(char *p);

In a function declared as:

int f(char const *const p);

the const qualifier to the left of the *
is not at the top level, so it is part of
the function’s signature. However, the
const qualifier to the right of the *is at
the top level, so it is not part of the
function’s signature. Thus, the func-
tion declared just above has the same
signature as:

int f(char const *p);

It’s important to note that C++ does
not ignore top-level cv-qualifiers in
object and type declarations. For
example, in declaring an object such
as:

port volatile *const p = ... ;

the top-level cv-qualifier is const. This
is not a parameter declaration, so all
cv-qualifiers are significant. The object
p is indeed constant.

More to come

Although C++ ignores top-level cv-
qualifiers in parameter declarations
when determining function signa-
tures, it does not ignore those cv-qual-
ifiers entirely. I’ll explain what I mean
by that in my next column. esp

Dan Saks is the president of Saks &
Associates, a C/C++ training and con-
sulting company. He is also a contribut-
ing editor for the C/C++ Users
Journal. He served for many years as
secretary of the C++ standards committee

and remains an active member. With
Thomas Plum, he wrote C++
Programming Guidelines (Plum-
Hall). You can write to him at
dsaks@wittenberg.edu.

References
1. Saks, Dan, “Using constand volatile in

Parameter Types,” Embedded Systems

Programming, September 1999, p. 77.

2. Saks, Dan, “Overloading with const,”

Embedded Systems Programming,

December 1999, p. 81.

3. Saks, Dan, “More on Overloading with

const,” Embedded Systems

Programming, January 2000, p. 71.

PROGRAMMING POINTERS

Embedded Systems Programming FEBRUARY 2000 65

	return:

