RETURN

PROGRAMMING POINTERS

Placing Data into ROM
with Standard C

Severalmonths ago I described

the problem of using C or C++ to
place data into read-only memory
(ROM). I explained that declaring an
object const is necessary but not suffi-
cient to get your compiler to place
that object into ROM. (See “Placing
Data into ROM,” May 1998, p 11.)

In the following months, I elabo-
rated on the const qualifier. (See
“Placing const in Declarations,” June
1998, p. 19, and “What const Really
Means,” August 1998, p. 11.) I also
introduced the volatile qualifier.
(See “Volatile Objects,” September
1998, p. 101.) With that as back-
ground, we can take a closer look at
what it takes to place data into ROM.

Hewing to the standard

C and C++ implementations vary
across platforms, sometimes signifi-
cantly. The purpose of a language
standard is, among other things, to
provide programmers with a common
dialect for writing programs that can
execute on a wide variety of platforms.
embedded
often deal with physical resources

Unfortunately, systems
such as device registers or ROM,
which, by their nature, strain the
capabilities of a platform-indepen-
dent dialect.

In practice, it’s nearly impossible to
write embedded systems entirely in
standard C or C++. Most standard-con-
forming C and C++ implementations
provide some non-standard exten-

sions. Although you may have little
choice but to use such extensions, you
should use them only as needed. You
should stick to the standard dialect as
much as possible because, all other
things being equal, portable code is
better than non-portable code.

Unfortunately, when it comes to
placing data into ROM, both the C
and C++ standards say surprisingly lit-
tle. (Appallingly little, some might
say.) Nonetheless, it’s still worth look-
ing at what they do say. Since the C++
standard builds on groundwork laid by
the C standard, we’ll start by looking
at what the C standard has to say.

C's abstract machine

Often, the clearest and most direct
way to explain the behavior of a pro-
gram construct is to describe how it
executes on some representative com-
puter. This is what the C standard tries
to do.

Although real computers have
many similarities, they also have differ-
ences. To be commercially successful,
a programming language standard
should avoid unnecessary bias toward

or against any particular architecture.
Thus, the C standard describes pro-
gram behaviors in terms of a hypo-
thetical abstract machine rather than
any real one.

A real machine that executes a C
program need not behave exactly like

the abstract machine in every respect.
The standard requires only that pro-
grams executing on a real machine
produce the same results that they
would when executing on the
abstract machine. This requirement
is commonly known as the “as if” rule
because a C language implementa-
tion is free to do as it pleases as long
as compiled programs produce the
same observable behavior as if they
were executing on the abstract
machine.

The abstract machine for standard
C has separate address spaces for code
and data. Although on many real
machines, pointers to functions (in
the code space) have the same repre-
sentation as pointers to objects (in the
data space), the standard has no such
requirement. Thus, a program that
converts a function pointer into an
object pointer, or vice versa, is not a

Embedded Systems Programming NOVEMBER 1998 111



strictly conforming program. That is, the
program won’t execute properly on
some standard C platforms.

Providing for read-only storage

All data in the abstract machine
resides in one conceptual address
space. Neither the stack nor the heap
gets a separate data space. Thus, a
pointer to an object of type T can
point to any T object, whether that
object has automatic storage (on the
stack), dynamic storage (in the heap),
or static storage.

The single data space encompasses
objects with
volatile-qualified types, as well as

const-qualified and

unqualified types. Specifically, the
standard says that:

® Qualified and unqualified versions
of a type have the same representa-
tion and alignment requirements

® Pointers to qualified or unqualified
versions of a type have the same
representation and alignment

requirements

These rules say that for any type T,
a program can have a “pointer to a
qualified T’ pointing to an “unquali-
fied T.” Here’s an example where T is
int:

int i;
int const *pci = &i;

This declares pci as a “pointer to
const int” pointing to an int.

By themselves, the rules also say
that a program can have a “pointer to
an unqualified T’ pointing to a “quali-
fied T,” as in:

int const ci;

int *pi = &ci; // not quite
However, pointer conversion rules
elsewhere in the standard prohibit
conversions that strip away qualifiers,
unless you use a cast. (I discussed

112 novewmBeR 1998 Embedded Systems Programming

those conversion rules in “What const
Really Means,” August 1998, p. 11.)
For example:
int *pi = (int *)&ci; // ok

Thus, a pointer to non-const T can
point to a const T object. This seems
to suggest that a program can use a
pointer to a non-const type to store
into a const object, which in turn sug-
gests that const objects really aren’t
read-only after all. If that’s the case,
then how can a standard C imple-
mentation ever place objects into
ROM?

Permission to place objects into
ROM comes from the following rule:

® [fa program attempts to modify an
object defined with a const-quali-
fied type via an expression with a
non-const-qualified  type, the

behavior is undefined

For example, the previous declara-
tion initializes pi to point to c¢i. The
expression *pi has type int, which is a
non-const-qualified type. However,
*pi designates ci, which is defined as
a const-qualified int. A program can
use *pi to inspect the value of ci, as
in:
if (xpi > 0)  // ok
However, if it tries to use *pi to store
into ci, the behavior is undefined:

*pi = 7; // undefined

This assignment is an error, but it’s
the kind of error that is difficult, if
not impossible, to detect at compile
time. Acknowledging the difficulty of
diagnosing this error, the standard
relieves the C implementation of all
responsibility. Once a program lapses
into undefined behavior, all bets are
off. The program has violated its
obligations under the standard, so
the C implementation is under no
obligation to get anything right
anymore.



Often, the clearest and most direct way to explain the behavior of a program
construct is to describe how it executes on some representative computer.

A footnote in the standard summa-
rizes the freedom that C implementa-
tions have to place data into ROM:

® The implementation may place a
const object that is not volatile in a
read-only region of storage

A C compiler cannot place an
object into ROM if it’s volatile as well
as const. The value of a volatile object
might be changed by events outside
the program’s control. An object can’t
exhibit volatile behavior if it resides in
ROM.

I'm a little intrigued by the exact
wording of the footnote. I expected it
to say something like:

This is what the C standard tries to do.

® The implementation may place a
const object with static storage that is
not volatile in a read-only region of
storage

An object can’t very well reside in
ROM unless it has a fixed address
determined at translation time. Maybe
omitting the phrase “with static stor-
age” was an oversight, but maybe it
wasn’t.

I suppose this wording allows for an
architecture that can write-protect
RAM at run time. Write-protected
RAM is not ROM in the sense that I
think most embedded programmers
speak of ROM, but it’s ROM nonethe-
less. In theory, a program could

114 novemseRr 1998 Embedded Systems Programming

declare const objects as auto variables
and write-protect them at run time.
I'm not aware of any architecture that
actually does this, but if you know of
one, please let me know.

Errata

My previous column (“Volatile
Objects,” September 1998, p. 101)
contained numerous program frag-
ments built around a loop of the form:

while (xpc & READY == 0)
/% do nothing until ready */;

Reader Don Starr pointed out that
the condition in the loop does not do
as I intended. Whereas & has a higher
precedence than == & has a lower
precedence. As written, the loop is
equivalent to:

while (xpc & (READY == 0))
/% do nothing until ready */;

I should have written:

while ((xpc & READY) == 0)

/% do nothing until ready */;

I’ve never been one to insert
redundant parentheses. However,
when I showed this one to my brother
Joel, he said that his philosophy has
been for some time:

“When in doubt about precedence,
parenthesize. When certain about
precedence, parenthesize. In either
case, if you’re wrong, your program
will still work and no one will be the
wiser.”

Score one for his side. esp
Dan Saks is the president of Saks &
Associates, a C/C++ training and consult-
ing company. He is also a contributing edi-
tor for the C/C++ Users Journal. He
served for many years as secretary of the
C++ standards committee and remains an
active member. With Thomas Plum, he
wrote C++ Programming Guidelines.
You can write to him at dsaks@uitten-
berg.edu.



	return: 


