
In my last installment, I explained
the basic syntax of object declarations
in C and C++ in terms of declaration
specifiers and declarators. I used these
terms to explain how the const qual-
ifier fits into that syntax. Along the way,
I dropped some hints about how plac-
ing const in a declaration affects the
declaration’s meaning. This month, I’ll
explain those effects more precisely.

Last time, I wrote that these decla-
rations are equivalent:

const T *p;

T const *p;

and that (unlike just about everybody
else) I prefer the latter form. Both
declare that p has type “pointer to
const T.” p is not const, but the T
object that it points to is const. Thus,
the program can alter the value of p,
but not the value of *p.

That last sentence is an oversimpli-
fication. As such, it’s probably mislead-
ing. A subtle but extremely important
distinction exists between the expres-
sion that you use to designate (refer
to) an object and the object itself.
Now, I’m about to tell you something
you probably already know, but please
don’t get impatient and wander off.
I’m going to use terminology that’s
more precise than you’re probably
accustomed to using. I need that pre-
cise terminology to clarify the state-
ment that I said was misleading.

For example, given:

char c = ‘ ‘;

char *pc = &c;

then c and *pc are two different

expressions that designate the same
object. An expression such as:

*pc = ‘x’;

alters the char object that *pc desig-
nates. In so doing, the assignment
alters the char object that cdesignates
because c and *pcdesignate the same
object. (cnow has the value “x.”)

Of course, you already knew that.

However, we rarely use phrases such as
“it alters the char object that c desig-
nates.” We usually just say “it alters c.”
Most of the time, the subtle distinction
doesn’t matter. In the following dis-
cussion, it does.

Returning to my earlier example:

T const *p;

declares that p has type “pointer to
const T.” Thus, the expression *phas
type “const T.” In standardese, we say
that *p has a const-qualified type.
Although the const qualifier appears
in p’s declaration, it applies only to
what p points to, not to p itself. If p
were declared as “constpointer to ...”
then p would have a const-qualified
type. However, p is just plain “pointer
to ...,” so it has an unqualified type.

Here again is the statement that I
said was misleading: given the above

declaration for p, the program can
alter the value of p, but not the value
of *p. To see why it’s misleading, let’s
consider an example in which T is int.

The declarations:

int x[N];

int const *p = x;

compile without error. The second
one initializes p to point to the first

element of x. Thereafter, the const-
qualified expression *pdesignates the
same object as the unqualified expres-
sion x[0].

Normally, you don’t see those dec-
larations for xand pin the same scope.
You’re more likely to see pas a formal
parameter, as in:

int x[N];

int f(int const *p);

Then a call such as f(x) initializes p
with x.

In any event, the program cannot
use *p to alter the object:

*p = 1; // error

However, the program can still use
x[0] to alter that same object:

x[0] = 1; // ok

Embedded Systems Programming AUGUST 1998 11

P R O G R A M M I N G P O I N T E R S

Dan Saks

What const Really Means

The expression you use to refer to an object dif-

fers from the object itself.This subtle distinction

usually doesn’t matter, but sometimes it does.

By changing the value of x[0], the
program also changes the value of *p.

The expression p has an unquali-
fied type. Therefore, the program can
change the value of the object that p
designates. After:

++p;

*pdesignates the same object as x[1].
The program still can’t use *p to
change the object, but now changing
the value of x[1] effectively changes
the value of *p.

Thus, a program can alter the
value of *pafter all. It just can’t use *p
to do it. Rather, it must use an
unqualified expression such as x[i].

Here, then, is a more precise state-
ment of what a declaration such as:

T const *p;

means. A program can use the
expression p to alter the value of the
pointer object that pdesignates, but it
can’t use the expression *p to alter
the value of any objects that *pmight
designate. If the program has another
expression e of unqualified type that
designates an object that *p also des-
ignates, the program can still use e to
change that object.

Thus, a program might be able to
change an object right out from
under a const-qualified expression.

If that’s so, then what good is the
constqualifier? Does it really do any-
thing? Fortunately, it does. Even
though the const qualifier doesn’t
have as much oomph as you might
have expected, it still has enough so
that you can do some useful things
with it.

C and C++ programs can convert a

pointer of one type into a pointer of a
compatible type that uses the const
qualifier differently. Such a conver-
sion is a qualification conversion.
However, both languages restrict
qualification conversions in a way that
allows for a consistent notion of
objects that are truly read-only and
can reside in ROM.

Let’s look at a slight variation on
the previous example:

int n = 0;

int const *p = &n; // ok

Here, n designates a modifiable int
object. At this point, the compiler
knows that code later in the program
is allowed to alter that int object.
Therefore, it cannot place the object
in ROM.

The expression &nhas type “point-
er to int.” The declaration for p con-
verts &nto type “pointer to constint,”
adding a const qualifier in the
process. This is a valid qualification
conversion. This conversion in no way
invalidates n’s declaration. The pro-
gram can still use n to alter the int
object, even if it can’t use *p for the
same purpose.

In contrast, consider:

int const n = 10;

int *p = &n; // error

Here, n designates a non-modifiable
int object. If we expect the compiler
to be able to place const objects in
ROM, the compiler must be allowed to
presume that no code in the program
will alter this int object. It must also
defend its presumption as follows.

The expression &n has type
“pointer to const int.” The decla-
ration for p converts &n to type
“pointer to int” by stripping away a
const qualifier. This is not a valid
qualification conversion. It opens
the door for an expression such as
++*p to modify an object previously
defined as const.

I suggest that you “think of const
as a promise.” (See my article “C++

PROGRAMMING POINTERS

12 AUGUST 1998 Embedded Systems Programming

Theory and Practice: const as a
Promise,” The C/C++ Users Journal,
November 1996.) Making a promise
about your own work doesn’t mean
that others who came before you are
bound (retroactively) by the same
promise. However, once you make a
promise about your own work, you
must not entrust that work to others
unless they agree to uphold the
promise as well. Otherwise, your
promise means nothing.

Let’s apply this reasoning to
another example. Consider:

int m = 0;

int *const p = &m;

int *q = p;

Here, m designates a non-const int
object. The declaration makes no
promises that the program won’t alter
m.

The expression p has type
“const pointer to (non-const)
int.” p has a const-qualified type.
The program promises that once it
initializes p, it won’t change p.
However, *p has an unqualified type,

so the program can still use *p to
alter an int object. The expression
*p designates the same object as m,
and that object is non-const, so p’s
declaration does not violate any
promises made by m’s declaration.

The expression q has type “(non-
const) pointer to (non-const) int.”
q’s declaration makes no promises
about either qor *q. The declaration
initializes q by copying p. p is indeed
const, but this initialization doesn’t
alter p; it just copies p. Afterwards, q
points to the same object as p, but
that object is non-const. Again, q’s
declaration violates no promises in
any prior declarations.

As I mentioned in an earlier col-
umn, placing data in ROM is just one
of several uses for the constqualifier.
Using the constqualifier in a declara-
tion does not assure that the declared
object will actually wind up in ROM.
The declaration must satisfy other
semantic constraints. In the coming
months, I’ll elaborate those con-
straints and explain other uses for the
constqualifier.

Thanks to my brother Joel for a
very helpful critique of this column.

A little help, please

In the short time that I’ve been writ-
ing this column, I’ve already received
several requests from readers looking
for books on embedded program-
ming techniques. If you know of any
such books, whether good or bad,
please send me the titles so I can pass
them on to others. I’d also welcome
any short comments on the book(s)
that you’d care to share. esp

Dan Saks is the president of Saks &
Associates, a C/C++ training and con-
sulting company. He is also a contribut-
ing editor for the C/C++ Users Journal.
He served for many years as secretary of
the C++ standards committee and remains
an active member. With Thomas Plum, he
wrote C++ Programming Guidelines
(Plum Hall, 1991). You can write to him
at dsaks@wittenberg.edu.

PROGRAMMING POINTERS

14 AUGUST 1998 Embedded Systems Programming

What good is the const qualifier? Does it really do anything?

Fortunately, it does. Even though the const qualifier doesn’t have as

much oomph as you might have expected, it still has enough so that

you can do some useful things with it.

	return:

