
Last month I introduced the const
qualifier as a way to declare data
that you would like your C or

C++ compiler to place into ROM. I
noted that simply declaring an object
const isn’t enough to get it into ROM.
You must also select the appropriate
options for your compiler, linker, and
other development tools. Moreover,
each object declared const must satisfy
certain semantic constraints before it’s
even eligible to be placed into ROM.

I’m working my way toward explain-
ing those constraints, but I’m not quite
there yet. As with many parts of C and
C++, focusing on the semantics of const
is difficult until you get past the syntax.
This month, I’ll clarify a few points
about the syntax of declarations that
relate to using const.

Many programmers find const con-
fusing, probably because there are so
many ways you can place const in a
declaration. For example, starting with
the declaration of a pointer variable:

T *p;

you can add const to produce any of:

const T *p; (1)
T const *p; (2)
T *const p; (3)
const T *const p; (4)
T const *const p; (5)

Not all of these have distinct meanings.
Here are some insights that should help
you sort them out.

Every object declaration in C and
C++ has two principal parts: a
sequence of zero or more declaration
specifiers, and a sequence of one or
more declarators, separated by com-
mas. For example:

static unsigned long int *x[N] ;

declaration specifiers declarator

A declaration specifier can be any of a
number of things. It can be a type speci-
fier such as int, unsigned, long, double, or
an identifier that names a type. It can be
a storage class specifier such as extern,
static, or register. It can be a function
specifier, such as inline or virtual.

The draft C and C++ standards use
slightly different grammars and termi-
nology to describe this stuff, but the
results are effectively the same. (These
days, when I talk about C, I’m talking
about C9X, the C standard undergoing
revision.) What C calls a declaration-
specifier, C++ calls a decl-specifier. C
classifies the keyword typedef as a
storage class, but C++ does not. Both
C and C++ recognize the function
specifier inline, but only C++ recog-
nizes virtual.

A declarator is the name being
declared, possibly surrounded by oper-
ators such as *, [], (), and (in the case
of C++) &. In a declarator, * means
“pointer to,” [] means “array of,” ()
either means “function returning” or
serves as grouping, and & means “refer-
ence to.” For example, *x[N] is a
declarator indicating that x is an “array
of N elements of pointer to...” some-
thing. That something is the type spec-
ified by the declaration specifiers.

Thus:

static unsigned long int *x[N];

declares x as an object of type “array of
N elements of pointer to unsigned long
int.” (I didn’t say what to make of sta-
tic here, but I will in a moment.) In a
declaration as simple as:

int n;

the declarator is just the identifier n
without any operators.

A declarator may contain more than
one identifier. The declarator *x[N] con-
tains two identifiers, x and N. Only one
of those is the one being declared. The
other(s) must have been declared previ-
ously. The draft C++ standard uses the
term declarator-id to distinguish the
identifier being declared from other
identifiers that appear in the declarator.
The declarator-id in *x[N] is x. As far as
I can tell, the draft C standard has no
corresponding terminology.

Some declaration specifiers do not
contribute to the type of the declarator-
id. Rather, they specify other semantic
information that applies directly to the
declarator-id. For example, in:

static unsigned long int *x[N];

the keyword static does not apply to
the unsigned long int objects that the
pointers in x point to. Rather, it applies
to x itself:

static unsigned long int * x [N];

This declares that x is a static object of
type “array of N elements of pointer to
unsigned long int.”

The order in which the declaration
specifiers appear in a declaration does
not matter. At least, it doesn’t to com-
pilers. Thus, these declarations are
equivalent:

PROGRAMMING POINTERS
by Dan Saks

Placing const in Declarations
As with many

parts of C and

C++, focusing on

the semantics of

const is difficult

until you get past

the syntax.

JUNE 1998 EMBEDDED SYSTEMS PROGRAMMING 19

PROGRAMMING POINTERS

static unsigned long int *x[N];
int long static unsigned *x[N];
unsigned int static long *x[N];

I think most of us are used to placing
a storage class specifier such as static
as the first (left-most) declaration spec-
ifier, but it’s just a common conven-
tion, not a language requirement.

Okay, so where does const fit in all
this? Syntactically, const is another
one of the declaration specifiers.
However, it’s an unusual specifier in
that it can also appear in declarators.
For example, in:

const T *p;

const appears as a declaration specifi-
er. In:

T *const p;

const appears in the declarator. Unlike
storage class specifiers, such as extern or
static, which apply directly to the
declarator-id no matter where they
appear, const modifies the declared type

in a way that depends on where it
appears. To see how, let’s look at each of
the five different pointer declarations that
I listed at the beginning of this article.

Since the order of the declaration
specifiers doesn’t matter, these decla-
rations are equivalent:

const T *p; (1)
T const *p; (2)

Both declare that p has type “pointer to
const T.” p itself is not const, but the T
object that it points to is const. Thus,
the program can alter the value of p,
but not the value of *p. In contrast:

T *const p; (3)

declares that p has type “const pointer
to T”. Here, p is const but the T object it
points to isn’t. The program cannot
alter p, but it can alter *p.

Just as (1) and (2) are equivalent, so
are:

const T *const p; (4)
T const *const p; (5)

because they differ only in the order of
the declaration specifiers. They declare
that p has type “const pointer to const
T,” meaning that both the pointer and
what it points to are const. The pro-
gram can alter neither p nor *p.

Because declarations such as:

const T *p; (1)
T const *p (2)

are equivalent, you should pick one or
the other and use it consistently.
Almost all C and C++ programmers
use (1), if for no other reason than
that’s what everyone else seems to do.
For many years, I also used (1).
However, for the past year or so, I’ve
been using (2). Here’s why.

When const appears in a declarator, it
modifies a pointer. Pointer declarations
read from right to left. Using declarations
of form (2) instead of (1) lets you read
the entire declaration, not just the pointer
declarators, from right to left. That is:

T const *p; (2)

declares p as a “pointer to const T” and:

T *const p; (3)

declares that p as a “const pointer to T.”
This is the style I will use in upcoming
columns.

ERRATA
Last month, I used this declaration as
an example:

unsigned char two_to_the[]
= { 1, 2, 4, 8, 16, 32, 128, 256 };

The declaration should have been:

unsigned char two_to_the[]
= { 1, 2, 4, 8, 16, 32, 64, 128 };

Oh well. At least it wasn’t in a mission-
critical component.

Dan Saks is the president of Saks &
Associates, a C/C++ training and con-
sulting company. He is also a con-
tributing editor for the C/C++ Users
Journal. You can write to him at
dsaks@wittenberg.edu.

20 EMBEDDED SYSTEMS PROGRAMMING JUNE 1998

	return:

