
Just about every embedded pro-
gram deals with at least some
invariant data; that is, data whose

values should never change during
program execution. For example, I
think most of us would be rather taken
aback if calling:

printf(“Hello”);

ever printed anything but “Hello.”
Clearly, string literals such as “Hello”
should be invariant. In addition to liter-
als, many programs refer to configura-
tion data, state-transition tables, or
numeric coefficients that should also
be invariant. We usually speak of
invariant data as being read-only, as
opposed to variant data which is read-
write.

In many desktop applications, the
distinction between read-only and
read-write data is logical rather than
physical. The linker may place all the
read-only data together in one data
segment to facilitate program loading,
but all the data winds up in RAM
nonetheless.

In many embedded systems, the dis-
tinction isn’t just logical. Most embed-
ded programs don’t load from disk in
the sense that desktop applications do.
Rather, an embedded program, includ-
ing its read-only data, resides perma-
nently in ROM. Clearly, read-write
data can’t also live in ROM; it must be
in RAM. Therefore, a compiler must
be able to distinguish the read-only
data from the read-write data so it can
place the former in ROM and the latter
in RAM.

Actually, thinking in terms of just
ROM vs. RAM is too limiting for
many embedded systems. For exam-
ple, some systems use a common con-
trol program for every model in a prod-
uct line, and use different configura-
tion data to customize the behavior of
each model. These systems place code

and read-only data in different storage
segments so they can place the data in
a ROM separate from the code. Thus,
although each model uses a different
ROM for configuration data, all mod-
els in the product line can use the same
ROM(s) for code.

Typical C and C++ compilers for
embedded systems respond to these
needs by mapping code and data into
several logical segments:

■ Code (also known as text): a read-
only segment containing the code

■ Literal: a read-only segment con-
taining initialized data

■ Initialized data (often called just
plain data): a read-write segment
containing data that’s initialized as
part of program startup

■ Uninitialized data (often known as
bss): a read-write segment contain-
ing data that remains uninitialized
until the program actually uses it

A compiler and linker can also pro-
vide controls, in the form of command
line switches or #pragma directives, that
let you merge some logical segments
into a single physical segment. For

example, you might merge the literals
with the code (in ROM) or with the ini-
tialized data (in RAM).

With this segmentation model, plac-
ing string literals into ROM is fairly
easy. The compiler collects all the
string literals into the literal segment.
The linker and other back-end tools,
with guidance from the appropriate
command switches, place the literal
segment in ROM.

Placing non-literal data in ROM is
more of a problem. The compiler must
be able to distinguish initialized read-
only data from initialized read-write
data. Clearly, uninitialized data can’t
be read-only. Uninitialized data is use-
less if you can never store a value into
it, so it must be in RAM. It’s not so
obvious what to do with initialized
data.

For example, when a compiler
encounters a declaration such as:

unsigned char two_to_the[]
= { 1, 2, 4, 8, 16, 32, 128, 256 };

how is it supposed to know whether
two_to_the is read-only data or read-
write data that just happens to have a
specified initial value? In other words,
how does the compiler know whether to
place the data into the literal segment or
into the initialized data segment?

By the way, even if two_to_the turns
out to be read-write data in RAM, a
copy of the initial values 1, 2, 4, and so
on probably still appear in ROM. The
program initializes two_to_the by copy-
ing the initial values from ROM to
RAM during startup.

Most C development tools for
embedded systems support the follow-
ing technique for placing initialized
data into ROM. When compiling a
source file, the compiler places all the
initialized data into one segment. By
default, that segment is the initialized
data segment. However, you can use a

PROGRAMMING POINTERS
by Dan Saks

Placing Data into ROM
I think most of

us would be rather

taken aback if

calling

pprriinnttff((““HHeelllloo””));;

ever printed

anything but

“Hello.”

MAY 1998 EMBEDDED SYSTEMS PROGRAMMING 11

PROGRAMMING POINTERS

compiler switch to make the compiler
place the initialized data into the literal
segment. Thus you can place selected
data that should be read-only into ROM
by collecting it into a separate source
file and by compiling with the switch
set to place all the initialized data from
that file into the literal segment.

One problem with this technique is
that it forces you to organize some parts
of your program according to its physi-
cal, rather than its logical, require-
ments. Whereas you might want to
place certain read-only and read-write
data in the same source file along with
the code that uses it, you can’t. You
must place the read-only data in a sep-
arate source file, which can make the
program harder to read and maintain.

Many compilers provide pragmas as
an alternative to using command
switches. The pragmas let you place
data from a single source file into dif-
ferent segments. For example, a compil-
er might let you write something like:

#pragma data(“literal”)
unsigned char two_to_the[]

= { 1, 2, 4, 8, 16, 32, 128, 256 };
#pragma data()

The first pragma tells the compiler
to place subsequent definitions for ini-
tialized data into the segment named
literal. The second pragma tells the
compiler to go back to placing initial-
ized data into the default segment.

Unfortunately, compilers differ in
their use of pragmas, sometimes dra-
matically. Both the C and C++ stan-
dards specify that pragmas exist, but
they don’t mandate that compilers sup-
port any particular pragmas. Therefore,
code that relies on pragmas is rarely
portable.

Another problem with both of the
above techniques (compiler switches
and pragmas) is that they don’t provide
compilers with a way to prevent writ-
ing into read-only data. A compiler
should be able to issue a diagnostic for

an assignment such as:

two_to_the[i] = 0;

but it can’t. You probably won’t notice
the error until you run the program.

Enter the const qualifier. The const
qualifier provides a way to declare
read-only data so that compilers can
also detect accidental attempts to mod-
ify that data. For example,

const unsigned char two_to_the[]
= { 1, 2, 4, 8, 16, 32, 128, 256 };

defines two_to_the as an “array of read-
only unsigned char.” The const qualifi-
er is part of the type of two_to_the and
compilers use this type information to
validate subsequent uses of the object.
For instance, given the declaration just
above, an assignment such as:

two_to_the[i] = 0;

is a compile-time error.
Simply declaring an object const is

not enough to get it into ROM. You
must still use the appropriate options on
the linker and other back-end tools to get
the data where you want it. The const
qualifier is just a safer and more conve-
nient way to get the process started.

Placing data in ROM is just one of
several uses for the const qualifier.
Thus, even with the appropriate support
from back-end tools, using the const
qualifier in a declaration does not assure
that the declared object will actually
wind up in ROM. The declaration must
satisfy other semantic constraints. In the
coming months, I’ll describe those con-
straints and explain other uses for the
const qualifier.

Dan Saks is the president of Saks &
Associates, a C/C++ training and con-
sulting company. He is also a con-
tributing editor for the C/C++ Users
Journal. He served for many years as
secretary of the C++ standards com-
mittee and remains an active member.
With Thomas Plum, he wrote C++
Programming Guidelines (Plum Hall,
1991). You can write to him at
dsaks@wittenberg.edu.

12 EMBEDDED SYSTEMS PROGRAMMING MAY 1998

	return:

